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Abstract
The Bethe ansatz equations of the fundamental Sp(2N) integrable model are
solved by a peculiar configuration of roots leading us to determine the nature of
the excitations. They consist of N elementary generalized spinons and N − 1
composite excitations made by special convolutions between the spinons. This
fact is essential to determining the low-energy behaviour which is argued to
be described in terms of 2N Majorana fermions. Our results have practical
applications to spin–orbital systems and also shed new light on the connection
between integrable models and Wess–Zumino–Witten field theories.

PACS numbers: 75.10.−b, 02.30.Ik, 05.50.+q

The study of quantum one-dimensional integrable models has turned out to be a fruitful venture
since the seminal work of Bethe in 1931 [1]. Over the years, solvable models have been
extremely useful in many subfields of physics, providing us with a rich laboratory in which new
theoretical insights and non-perturbative methods can readily be tested. Recent progress in the
experimental study of low-dimensional materials, e.g. spin ladders and carbon nanotubes [2],
has been an additional source of motivation to investigate one-dimensional exactly solvable
models.

The basic concept of quantum integrability is the S-matrix which represents either the
factorized scattering of particles of (1 + 1) quantum field theories or the statistical weights of
integrable two-dimensional lattice models. It turns out that the symmetry of the S-matrix plays
a fundamental role in the theory and classification of integrable systems [3, 4]. Of particular
interest is the Sp(2N) symmetry which preserves bilinear antisymmetric metrics, typical of
systems with N -component Dirac fermions. Even though the Bethe ansatz solution of the
integrable Sp(2N) models has long been known [5, 6], basic properties such as the nature of
the elementary excitations and the low-energy behaviour have not yet been determined.

The purpose of this letter is to unveil the physical content of the fundamental (vector
representation) Sp(2N) solvable magnet. We argue that the low-energy properties are given
in terms of 2N Majorana fermions due to the presence of special low-lying excitations in the
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spectrum. There exist at least two immediate applications of this result. First, it provides us
with a unique counter-example to the conjecture that integrable models based on the vector
representation of Lie algebras should be lattice realizations of Wess–Zumino–Witten (WZW)
conformal theories [7–9]. In fact, we predict c = N for the fundamental integrable Sp(2N)

model while the central charge of the Sp(2N) WZW theory is c = N(2N + 1)/(N + 2). Next,
our study is of utility for one-dimensional systems with coupled spin and orbital degrees of
freedom such as the spin–orbital [10–12] and spin–tube [13] models. More precisely, we
recall that the effective spin–isospin Hamiltonian describing these systems may be written in
the form [10, 14]

HSO(J0, J1, J2) =
L∑

i=1

2∑
α=0

JαP
(α)
i,i+1 (1)

where Jα are superexchange constants and P
(α)
i,i+1 denote the respective projections on the

singlet, triplet and doublet spin–isospin states, see [14] for details. Writing these projectors in
terms of two commuting sets of Pauli matrices, it is not difficult to identify that the integrable
Sp(4) spin chain [17] corresponds to the point J0/J1 = J0/J2 = 1/3. This point is interesting
because it corresponds to both anisotropic and asymmetric spin-1/2 couplings1, thus being
closer to representing the properties of realistic materials [18, 19] than the integrable SU(4)

case J0 = J1 = J2 [16]. This then provides us with a rare opportunity to determine exactly
the nature of the excitations in a relevant spin–orbital model.

In the context of statistical mechanics the integrable Sp(2N) model is a multistate vertex
system defined on the square lattice whose bond variables take 2N possible values. With each
type of configuration of four bonds a, b, c, d meeting at a vertex, we associate a Boltzmann
weight factor Scd

ab(λ) where λ is the spectral parameter. Compatibility between integrability
and the Sp(2N) invariance (‘ice-type’ restriction) leads us to the following amplitudes [4, 6]:

Scd
ab(λ) = δa,dδc,b + λδa,cδb,d − λ

λ + N + 1
εaεcδa,b̄δc,d̄ (2)

where ā = 2N + 1 − a, εa = 1 for 1 � a � N and εa = −1 for N + 1 � a � 2N .
With any integrable vertex model one can associate a local spin chain commuting with

the corresponding transfer matrix whose matrix elements are given by ordered product of L

factors Scd
ab(λ). As usual, the Hamiltonian is proportional to the logarithmic derivative of the

transfer matrix at the regular point λ = 0, and in this case the expression is

HSp(2N) =
L∑

i=1

[
δa,dδc,b − 1

N + 1
εaεcδa,b̄δc,d̄

]
e(i)
ac ⊗ e

(i+1)
bd (3)

where ε
(i)
ab is the elementary matrix [eab]l,k = δa,lδb,k acting on site i. We observe that the

spectrum of HSO(J1/3, J1, J1) matches that of J1HSp(4) − J1L. The Sp(2N) Hamiltonian (3)
is solvable by the Bethe ansatz [5, 6] and its eigenvalues E(L) can be parametrized in terms
of a set of variables λ

(a)
j , j = 1, . . . , ma and a = 1, . . . , N , satisfying the following Bethe

equations: [
λ

(a)
j − iδa,1/ηa

λ
(a)
j + iδa,1/ηa

]L

=
N∏

b=1

mb∏
k=1, k �=j

λ
(a)
j − λ

(b)
k − iCa,b/ηa

λ
(a)
j − λ

(b)
k + iCa,b/ηa

, (4)

and the eigenvalues are given by

E(L) = −
m1∑
i=1

1

[λ(1)
i ]2 + 1/4

+ L (5)

1 In the notation of [13], equations (2.5)–(2.7), the Sp(4) point corresponds to two strongly coupled XXZ chains
with J1 = J z

1 = J2/2 = J z
2 = 2/3, λ = 8/3, �1 = �2/2 = 1.
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Figure 1. The ground state Bethe ansatz roots of the Sp(4) spin chain for L = 4. The roots are:
λ

(1)
j = {±0.3602, ±I/2} (crosses); λ

(2)
j = {±0.5337} (circles).
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Figure 2. The ground state Bethe ansatz roots of the Sp(4) spin chain for L = 8. The roots
are: λ

(1)
j = {±0.1226, ±0.4754, ±0.9568 + I ∗ 0.5590} (crosses); λ

(2)
j = {±0.4295, ±1.2848}

(circles).

where Cab is the Cartan matrix and ηa is the normalized length of the ath root of the Sp(2N)

algebra.
We start our study by considering first the Sp(4) model, motivated by its direct relevance

to the physics of spin–orbital systems. In fact, this is the simplest symplectic invariant system
since N = 1 is equivalent to the isotropic six-vertex model. Later on we will show that the
technicalities entering in the analysis of the Sp(4) model can be easily generalized to include
arbitrary N > 2. Essential to our study is determining the configurations of roots that describe
the absolute ground state and the elementary excitations. This can be done by solving the
Bethe equations (4), (5) for some values of L and comparing it with the exact diagonalization
of the Sp(4) spin chain. In figures 1 and 2 we exhibit the ground state Bethe ansatz roots for
L = 4 and 8 together with the values of the roots, respectively. We see that the variables λ

(1)
j

(crosses) and λ
(2)
j (circles) characterizing the ground state of the Sp(4) model are described
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by strings with different lengths, namely

λ
(1)
j =

{
ξ

(1)
j

ξ
(3)
j ± i[ 1

2 + O(e−γL)]
λ

(2)
j = ξ

(2)
j (6)

with γ positive and where ξ
(α)
j (α = 1, 2, 3) are real numbers. As usual, the low-lying

excitations are described as the lack of certain λ
(1,2)
j as compared with the ground state roots.

The important point here is to observe that the rapidities λ
(1)
j are described in terms of two

independent types of string, i.e. 1- and 2-strings. This feature should be contrasted with the
behaviour of the Bethe ansatz roots of other fundamental integrable systems such as SU(N)

and O(N) models [8, 16]. In fact, for the latter systems each ath root λ
(a)
j characterizing

the infinite-volume properties has a unique string length. To explore the consequences of the
peculiar string configuration (6) we substitute it in the Bethe ansatz (4) and we obtain the
following effective equations for the variables ξα

j :

L
[
ψ1/2(ξ

(α)
j )δα,1 + ψ1(ξ

(α)
j )δα,3

] = 2πQ
(α)
j +

3∑
β=1

Nβ∑
k=1

φαβ(ξ
(α)
j − ξ

(β)

k ) (7)

where ψa(x) = 2 arctan(x/a) and Nα is the number of roots ξ
(α)
j . For L a multiple of four2,

the quantum numbers can be written as Q
(α)
j = −(Nα − 1)/2 + j − 1, with j = 1, . . . , Nα ,

and the matrix elements φαβ(x) are given by

φαβ(x) =

 ψ1(x) −ψ1(x) ψ1/2(x) + ψ3/2(x)

−ψ1(x) ψ2(x) −ψ1/2(x) − ψ3/2(x)

ψ1/2(x) + ψ3/2(x) −ψ1/2(x) − ψ3/2(x) 2ψ1(x) + ψ2(x)


 . (8)

The ground state consists of a sea of 1- and 2-strings with N1 = N2 = 2N3 = L/2. For
large L, the roots ξ

(a)
j are densely packed into its density distribution σ(ξ

(α)
j ) = 1/L(ξ

(α)
j+1−ξ

(α)
j )

and the relations (7) in the L → ∞ limit become integral equations for such densities. These
integral equations are solved by elementary Fourier techniques and we find that

σ (1)(x) = 1

2 cosh(πx)
, σ (2)(x) = 1

6 cosh(πx/3)
(9)

and

σ (3)(x) = 1

2π

∫ +∞

−∞
σ (1)(y)σ (2)(x − y) dy =

2√
3

sinh(2πx/3) − x

6 sinh(πx)
(10)

where we have emphasized the remarkable fact that σ (3)(x) is exactly the convolution of the
densities σ (1)(x) and σ (2)(x). Recall that the function σ (α)(x) is related to the continuous
probability densities of finding the rapidity ξ (α) with a given value x. We may therefore
interpret σ (3)(x) as the probability for the sum of two independent events with probability
σ (1)(y) at an arbitrary value y and σ (2)(x − y) at the complementary value x − y.

We now have the basic ingredients for investigating the thermodynamic limit properties.
The ground state energy per site e∞ is calculated by using equations (5), (9), (10) after replacing
the sum by an integral. The final result is

e∞ = −2

[
2 ln(2)

3
+

π

9
√

3
− 1

3

]
. (11)

The low-lying excitations are obtained by inserting holes in the density distribution of ξ
(α)
j ,

which means the removal of certain quantum numbers Q
(α)
j of the Bethe equations (7). The

2 This emphasizes the Sp(4) ⊃ Sp(2) ⊗ Sp(2) symmetry.
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necessary manipulations of these equations are standard [15, 16] and we find that the energy
ε(α)(ξ) and the momentum p(α)(ξ) of one-hole excitation in the sea of ξ

(α)
j , measured from the

ground state, have the form

ε(α)(ξ) = πσ (α)(ξ), p(α)(ξ) =
∫ +∞

ξ

ε(α)(x) dx (12)

where ξ is the α-hole rapidity. For the first two excitations one can easily eliminate the variable
ξ leading us to the following dispersion relations:

ε(1)(p) = π

2
sin(2p), ε(2)(p) = π

6
sin(2p) (13)

implying that these excitations are gapless and that their low-energy limits ε(α)(p) ∼ v(α)p

are governed by distinct sound velocities, i.e. v(1) = π and v(2) = π/3. The contribution to
the total spin of each of these excitations is 1

2 , and therefore we shall interpret them as spinons
propagating with different velocities which will separate in time.

Similar computation for the third excitation leads us to transcendental equations and an
analytical expression for the dispersion relation is hard to obtain. However, it is possible
to study the low-energy behaviour of such an excitation by expanding the density σ (3)(λ) in
powers of e−λ. We see that the low-momenta regime is dominated by both sound velocities
v(1) and v(2) and strictly in the p → 0 limit the lowest one prevails. This massless excitation
turns out to be a spinless mode whose speed of sound is v(3) = π/3. At this point we note that
recently the compound NaV2O5 has been modelled by an anisotropic/asymmetric spin–orbital
model [18]. Remarkably, the three-particle continuum found above is in accordance with the
excitation spectrum proposed in [18] to explain the optical properties of this material.

Next we would like to identify the underlying conformal field theory which describes
the low-energy limit of the integrable Sp(4) model. This can be investigated by analysing
the behaviour of the finite-size spectrum [20] of the Sp(4) spin chain. The type of critical
behaviour expected here is that of a theory that is not strictly Lorentz invariant, because the
sound velocities of the gapless excitations are not equal. This is the general behaviour of a
fixed point of Tomonaga–Luttinger type and the predictions of the conformal invariance for
the finite-size behaviour [20] are still applicable after slight modifications [21]. For example,
one expects the ground state energy E0(L) of the Sp(4) spin chain to behave for large L as

E0(L)

L
= e∞ − π

6L2

3∑
a=1

v(a)c(a) (14)

where c(a) and v(a) are the central charge and the sound velocity associated with each possible
massless degree of freedom.

In order to get a rough idea of the behaviour of the ground state finite-size correction, one
can apply the root density method [22] to the string Bethe ansatz equations (7). Within this
approach we find that each ath massless contributes with the value c(a) = 1 for the finite-size
correction (14). However, it is well known that the string assumptions may not give the correct
finite-size behaviour because the complex part of the roots can also contribute to the term
1/L2 as well; see for instance [23]. This means that the true contribution of the third mode to
the finite-size correction (14) could be different from the value c(3) = 1. To investigate this
possibility we have solved numerically the original Bethe ansatz equations (4) up to L = 36
which allows us to compute the sequence

Cef (L) = −
[
E0(L)

L
− e∞

]
6L

πv(2)
(15)
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Table 1. The finite-size sequence Cef (L) and its extrapolation (‘Extr.’) cef .

L Cef (L)

12 4.074 654
16 4.046 720
20 4.033 092
24 4.025 305
28 4.020 376
32 4.017 024
36 4.014 620
Extr. 4.001 (±2)

whose L → ∞ limit3 is cef = 3c(1) + c(2) + c(3).
In table 1 we exhibit the sequence (15) for several values of L together with its extrapolated

value. We see that cef is likely to be cef = 4 instead of cef = 5 as predicted by the string
hypothesis; that is, c(a) = 1 for each a = 1, 2, 3. This means that the imaginary parts of the
roots λ

(1)
j have conspired together to cancel the 1/L2 correction proportional to the third mode.

It is therefore tempting to think of the third excitation as a composite state of two elementary
spinons which does not contribute to the low-energy limit. As a consequence of that, the
continuum limit is described by a field theory with central charge c = 1 ⊗ 1 which is different
from the conformal anomaly of the Sp(4) WZW model.

Similar analysis can be performed for the excited states Ei(L), which enables us to
determine the corresponding conformal dimension by extrapolating the finite-size gap [21]:

Ei(L)

L
− E0(L)

L
= 2π

L2

3∑
a=1

v(a)X
(a)
i . (16)

In table 2 we show the corresponding sequence Xef (L) = [E1(L) − E0(L)] L
2πv(2) for

the lowest excited state of the Sp(4) spin chain. As before, it is useful to compute the same
amplitude by the root density method [22]. In this case we found that as L → ∞, Xef (L)

produces the value xef = 3
4 + 1

4 = 1. We see that the extrapolated value exhibited in table 2
agrees well with the analytical estimate of xef , leading us to interpret the operator content of
the lowest excitation as X

(1)
1 = X

(2)
1 = 1/4. This information together with the central charge

behaviour suggests that each elementary spinon mode a = 1, 2 is well described in terms of
the product of two Majorana fields. Therefore, the underlying field theory of the Sp(4) spin
chain is likely to be represented in terms of four Majorana fermions, perturbed by non-Lorentz
interaction terms that just renormalize the sound velocities, rather than be given by a Sp(4)

WZW theory.
Let us now turn to the problem of extending our results for general N > 2. The Bethe

ansatz equations are parametrized by N different types of roots, and it turns out that the first
N − 1 roots are given by both 1- and 2-strings while the last one behaves like 1-strings. If we
characterize the centre of the strings by ξ

(α)
j , α = 1, . . . , 2N−1, we find that the corresponding

ground state density distributions are

σ (α)(x) =




1

N

sin(πα/N)

cosh(2πx/N) − cos(πα/N)
, α = 1, . . . , N − 1

1

2(N + 1)

1

cosh[πx/(N + 1)]
, α = N

(17)

3 Recall that we have two possible momenta scales, π or π/3, and one needs to choose a way to normalize the
sequence (15). Here we choose to do it via v(2) = v(3) = π/3.
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Table 2. The finite-size sequence Xef (L) and its extrapolation (‘Extr.’) xef .

L Xef (L)

12 1.000 985
16 1.004 993
20 1.006 011
24 1.006 017
28 1.005 692
32 1.005 272
36 1.004 845
Extr. 1.006 (±2)

while for α = N + 1, . . . , 2N − 1 they are given by the convolution σ (α)(x) =
1

2π

∫ +∞
−∞ σ (2N−α)(y)σ (N)(x − y) dy.
The excitations are gapless, consisting of N − 1 generalized SU(N) spinons [16]

propagating with velocity v(α) = 2π
N

for α = 1, . . . , N − 1 and one standard spinon whose
speed of sound is v(N) = π

N+1 . In addition, we have N − 1 composite modes made by the
convolution between the first N − 1 spinons with the N th excitation. For N > 2, numerical
results for large L become difficult to obtain since the number of roots to be determined
grows rapidly with both N and L. However, for N = 3 and small L ∼ 18, our numerical
analysis is consistent with the fact the only modes contributing to the low-energy properties
are the spinons, each one with c = 1. All of these results seem to be strong evidence that the
continuum limit of such Sp(2N) integrable models can indeed be described in terms of 2N

Majorana fermions.
In conclusion, we have studied the excitation spectrum of the simplest integrable Sp(2N)

spin chain. Contrary to common belief, this system is not the lattice realization of the Sp(2N)

WZW conformal theory. Our study indicates that the nature of the excitations in spin–orbital
systems can be rather involved. In fact, the isotropic point J0 = J1 = J2 is known to have
three basic excitations [16], being the lattice realization of a SU(4) WZW field theory [7].
However, the anisotropic point J0/J1 = J0/J2 = 1/3 has only two independent excitations
and one composite mode that do not contribute to the low-energy limit, and it is described by
a c = 2 conformal field theory. This work prompts us to ask some questions that may open
up new interesting avenues. What is the nature of the excitations of the spin–orbital model (1)
in the crossover regime 1/3 � J0/J1 = J0/J2 � 1? What is the mechanism that made one
of the excitations become a composite state? Which is the integrable lattice Sp(2N) model
whose continuum limit corresponds to the Sp(2N) WZW theory?

We thank A L Malvezzi for valuable discussions. This work was supported by Brazilian
agencies Fapesp and CNPq.
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